Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mark D. Smith and Hans-Conrad zur Loye*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: zurloye@sc.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mg}-\mathrm{O})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.049$
Data-to-parameter ratio $=24.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$

Single crystals of the mixed alkaline earth platinate, tristrontium magnesium platinum hexaoxide, $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$, were grown from a KOH flux at 1273 K . The compound adopts the rhombohedral $\mathrm{K}_{4} \mathrm{CdCl}_{6}$ structure type, featuring chains of face-shared, distorted MgO_{6} trigonal prisms (Mg site symmetry 32) and PtO_{6} octahedra (Pt site symmetry $\overline{3}$) surrounded by columns of Sr^{2+} ions (Sr site symmetry 2).

Comment

The structure of $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$ was determined in 1997 (Núñez et al., 1997) by powder X-ray diffraction on a polycrystalline sample prepared by conventional sintering techniques, and was shown to adopt the $\mathrm{K}_{4} \mathrm{CdCl}_{6}$ structure type (Bergerhoff \& Schmitz-Dumont, 1956). This structure type features two crystallographically and chemically distinct K^{+}positions and consists of chains along [001] of face-shared, distorted KCl_{6} trigonal prisms and CdCl_{6} octahedra. The polyhedral chains are surrounded by spiral columns of K^{+}ions. To date, a large and compositionally diverse group of oxides adopting this structure type has been reported, typically as polycrystalline materials [reviewed in Stitzer et al. (2001)]. High-temperature flux growth from molten KOH has proven to be an effective oxide crystal growth medium. Single crystals of $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$ were readily grown from molten KOH at 1273 K , using

Fragment of the face-shared polyhedral chains in $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$. Displacement ellipsoids are drawn at the 90% probability level.

Received 26 February 2003

Accepted 14 March 2003
Online 23 April 2003
 along [110].
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ as the platinum source. $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$ represents an Mg -substituted form of the $\mathrm{K}_{4} \mathrm{CdCl}_{6}$-type oxide $\mathrm{Sr}_{4} \mathrm{PtO}_{6}$ (Randall \& Katz, 1959), with Mg ordered in the trigonal prism site (site-symmetry 32, Wyckoff symbol $6 a$) and Pt^{4+} in a rhombohedrally elongated octahedral site (site symmetry $\overline{3}$, Wyckoff symbol $6 b$). Fig. 1 illustrates the local coordination of these metal centers. The Sr^{2+} ion resides in an irregular eightcoordinate site (Wyckoff symbol 18e) of site symmetry 2. Fig. 2 shows a view of the polyhedral chains and Sr^{2+} columns. Bond lengths and angles from the present single-crystal determination of $\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$ are very close to those derived from powder data $[\mathrm{Mg}-\mathrm{O}=2.172(16) \AA, \quad \mathrm{Pt}-\mathrm{O}=$ 2.011 (16) \AA and $\mathrm{Sr}-\mathrm{O}=2.498$ (17)-2.742 (17) \AA]. Refinement of the site occupancies for Mg and Pt showed no significant deviation from whole occupancy, indicating a stoichiometric compound, and no $\mathrm{Sr} / \mathrm{Mg}$ mixing on the trigonal prism site.

Experimental

The $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ precursor was prepared according to a published method (Kaufman, 1967). Subsequently, SrCO_{3} (Alfa, 99.95\%), MgCO_{3} (Alfa, 99.8%), and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ (stoichiometric amounts, $c a$ 1 g total reagent mass) and KOH (Fisher, reagent grade; ~ 10 times by mass the total reagent amount) were loaded into a covered alumina crucible. The mixture was heated at 1273 K for 2 h , cooled to 1023 K at a rate of $1 \mathrm{Kh}^{-1}$, at which point the furnace was shut off and allowed to cool to room temperature radiatively. The KOH matrix was dissolved with distilled water, leaving plentiful transparent brown crystals with a rhombohedral habit.

Crystal data

$\mathrm{Sr}_{3} \mathrm{MgPtO}_{6}$	Mo $K \alpha$ radiation
$M_{r}=578.26$	Cell parameters from 1132
Trigonal, $R \overline{3} c$	reflections
$a=9.6432(4) \AA$	$\theta=4.2-36.3^{\circ}$
$c=11.1112(6) \AA$	$\mu=50.13 \mathrm{~mm}^{-1}$
$V=894.82(7) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=6$	Rhombohedron, brown
$D_{x}=6.439 \mathrm{Mg} \mathrm{m}^{-3}$	$0.11 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.073, T_{\text {max }}=0.239$
2412 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.049$
$S=1.01$
490 reflections
20 parameters
490 independent reflections
431 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=36.3^{\circ}$
$h=-16 \rightarrow 7$
$k=-11 \rightarrow 16$
$l=-18 \rightarrow 8$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0227 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-3.12 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00118 (8)

Table 1
Selected geometric parameters (\AA).

$\mathrm{Sr}-\mathrm{O}$	$2.472(3)$	$\mathrm{Mg}-\mathrm{O}$	$2.177(3)$
$\mathrm{Sr}-\mathrm{O}^{\mathrm{i}}$	$2.637(3)$	$\mathrm{Mg}-\mathrm{Pt}$	$2.77780(15)$
$\mathrm{Sr}-\mathrm{O}^{\text {ii }}$	$2.663(3)$	$\mathrm{Pt}-\mathrm{O}$	$2.031(3)$
$\mathrm{Sr}-\mathrm{O}^{\text {iii }}$	$2.731(3)$		
Symmetry codes:	(i)	$\frac{1}{3}-x+y, y-\frac{1}{3}, \frac{1}{6}+z ;$	(ii)
$\frac{2}{3}+y, \frac{1}{3}-x+y, \frac{1}{3}-z$.			
$-x+y, \frac{1}{3}-x, \frac{1}{3}+z ;$		(iii)	

Systematic absences in the dataset confirmed a c-glide operation, indicating the space groups $R 3 c$ and $R \overline{3} c$. Preliminary powder X-ray diffraction showed the compound to be isostructural with $\mathrm{K}_{4} \mathrm{CdCl}_{6}$ (space group $R \overline{3} c$); therefore, the expected centrosymmetric space group was chosen and confirmed by the structure solution. The largest difference peak and hole were located less than $0.8 \AA$ from the Pt atom.

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-Plus-NT (Bruker, 1999); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2001); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Funding for this research was provided by the National Science Foundation through grant DMR:0134156. The Bruker SMART APEX diffractometer was purchased using funds provided by the NSF IMR Program through grant DMR:9975623.

References

Bergerhoff, G. \& Schmitz-Dumont, O. (1956). Z. Anorg. Allg. Chem. 284, 1019.

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART-NT (Version 5.611), SAINT-Plus-NT (Versin 6.02a) and SADABS (Version 1.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (2001). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Kaufman, G. S. (1967). In Inorganic Syntheses, Vol. 9, edited by S. Y. Tyree Jr, pp. 182-185. New York: McGraw-Hill.
Núñez, P., Trail, S. \& zur Loye, H.-C. (1997). J. Solid State Chem. 130, 35-41. Randall, J. J. Jr \& Katz, L. (1959). Acta Cryst. 12, 519-521.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stitzer, K. E., Darriet, J. \& zur Loye, H.-C. (2001). Curr. Op. Solid State Mater. Sci. 5, 535-544.

